Last updated: Nov 26, 2012

MULTILAYER PERCEPTRONS

J. Elder

Outline

Multilayer Perceptrons

Combining Linear Classifiers

Learning Parameters

Multilayer Perceptrons

Combining Linear Classifiers

Learning Parameters

Implementing Logical Relations

Multilayer Perceptrons

AND and OR operations are linearly separable problems

The XOR Problem

Multilayer Perceptrons

□ XOR is not linearly separable.

How can we use linear classifiers to solve this problem?

Combining two linear classifiers

Multilayer Perceptrons

Idea: use a logical combination of two linear classifiers.

Combining two linear classifiers

Multilayer Perceptrons

Let f(x) be the unit step activation function: f(x) = 0, x < 0 $f(x) = 1, x \ge 0$

Observe that the classification problem is then solved by

Combining two linear classifiers

Multilayer Perceptrons

- This calculation can be implemented sequentially:
 - 1. Compute y_1 and y_2 from x_1 and x_2 .
 - 2. Compute the decision from y_1 and y_2 .
- Each layer in the sequence consists of one or more linear classifications.
- □ This is therefore a two-layer perceptron.

8

The Two-Layer Perceptron

Multilayer Perceptrons

Layer 1				Layer 2
X ₁	X ₂	y ₁	y ₂	1.4.5
0	0	0(-)	0(-)	B(0)
0	1	1(+)	0(-)	A(1)
1	0	1(+)	0(-)	A(1)
1	1	1(+)	1(+)	B(0)

$$f\left(\mathbf{y}_{1}-\mathbf{y}_{2}-\frac{1}{2}\right)$$

where

$$y_1 = f(g_1(x))$$
 and $y_2 = f(g_2(x))$

The Two-Layer Perceptron

Multilayer Perceptrons

The first layer performs a nonlinear mapping that makes the data linearly separable.

10

The Two-Layer Perceptron Architecture

11

J. Elder

The Two-Layer Perceptron

Multilayer Perceptrons

Note that the hidden layer maps the plane onto the vertices of a unit square.

12

Higher Dimensions

13

Multilayer Perceptrons

- Each hidden unit realizes a hyperplane discriminant function.
- The output of each hidden unit is 0 or 1 depending upon the location of the input vector relative to the hyperplane.

Higher Dimensions

14

Multilayer Perceptrons

 Together, the hidden units map the input onto the vertices of a p-dimensional unit hypercube.

Two-Layer Perceptron

- These p hyperplanes partition the *l*-dimensional input space into polyhedral regions
- Each region corresponds to a different vertex of the pdimensional hypercube represented by the outputs of the hidden layer.

Two-Layer Perceptron

Multilayer Perceptrons

- In this example, the vertex (0, 0, 1) corresponds to the region of the input space where:
 - **g**₁(x) < 0
 - **g**₂(x) < 0
 - $\Box g_3(x) > 0$

Limitations of a Two-Layer Perceptron

- The output neuron realizes a hyperplane in the transformed space that partitions the p vertices into two sets.
- Thus, the two layer perceptron has the capability to classify vectors into classes that consist of unions of polyhedral regions.
- But NOT ANY union. It depends on the relative position of the corresponding vertices.
- How can we solve this problem?

The Three-Layer Perceptron

Multilayer Perceptrons

- Suppose that Class A consists of the union of K polyhedra in the input space.
- Use K neurons in the 2nd hidden layer.

- □ Train each to classify one Class A vertex as positive, the rest negative.
- Now use an output neuron that implements the OR function.

The Three-Layer Perceptron

19

Multilayer Perceptrons

Thus the three-layer perceptron can separate classes resulting from any union of polyhedral regions in the input space.

The Three-Layer Perceptron

20

Multilayer Perceptrons

- The first layer of the network forms the hyperplanes in the input space.
- The second layer of the network forms the polyhedral regions of the input space
- The third layer forms the appropriate unions of these regions and maps each to the appropriate class.

Outline

Multilayer Perceptrons

Combining Linear Classifiers

Learning Parameters

□ The training data consist of *N* input-output pairs:

$$(\mathbf{y}(i), \mathbf{x}(i)), \quad i \in 1, \dots N$$

where

$$\mathbf{y}(i) = \left[\mathbf{y}_{1}(i), \dots, \mathbf{y}_{k_{L}}(i)\right]^{t}$$

and

$$\boldsymbol{x}(i) = \left[\boldsymbol{x}_{1}(i), \ldots, \boldsymbol{x}_{k_{0}}(i)\right]^{t}$$

Choosing an Activation Function

Multilayer Perceptrons

- The unit step activation function means that the error rate of the network is a discontinuous function of the weights.
- This makes it difficult to learn optimal weights by minimizing the error.
- To fix this problem, we need to use a smooth activation function.
- A popular choice is the sigmoid function we used for logistic regression:

Smooth Activation Function

Multilayer Perceptrons

$$f(a) = \frac{1}{1 + \exp(-a)}$$

24

CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

 $\mathbf{W}^t \boldsymbol{\phi}$

 X_1

For a binary classification problem, there is a single output node with activation function given by

$$f(a) = \frac{1}{1 + \exp(-a)}$$

Since the output is constrained to lie between 0 and 1, it can be interpreted as the probability of the input vector belonging to Class 1.

Output: K > 2 Classes

For a K-class problem, we use K outputs, and the softmax function given by

$$y_{k} = \frac{\exp(a_{k})}{\sum_{j} \exp(a_{j})}$$

Since the outputs are constrained to lie between 0 and 1, and sum to 1, y_k can be interpreted as the probability that the input vector belongs to Class K.

Non-Convex

- Now each layer of our multi-layer perceptron is a logistic regressor.
- Recall that optimizing the weights in logistic regression results in a convex optimization problem.
- Unfortunately the cascading of logistic regressors in the multi-layer perceptron makes the problem non-convex.
- □ This makes it difficult to determine an exact solution.
- Instead, we typically use gradient descent to find a locally optimal solution to the weights.
- The specific learning algorithm is called the backpropagation algorithm.

Nonlinear Classification and Regression: Outline

Multilayer Perceptrons

- Multi-Layer Perceptrons
 The Back-Propagation Learning Algorithm
- Generalized Linear Models
 - Radial Basis Function Networks
 - Sparse Kernel Machines
 - Nonlinear SVMs and the Kernel Trick
 - Relevance Vector Machines

The Backpropagation Algorithm

Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974

Rumelhart, David E.; Hinton, Geoffrey E., Williams, Ronald J. (8 October 1986). "Learning representations by back-propagating errors". Nature **323** (6088): 533–536.

Werbos

Rumelhart

Hinton

Notation

Multilayer Perceptrons

- □ Assume a network with *L* layers
 - k_0 nodes in the input layer.
 - k_r nodes in the r'th layer.

Notation

Let y_k^{r-1} be the output of the kth neuron of layer r-1.

Let w_{jk}^r be the weight of the synapse on the *j*th neuron of layer r from the *k*th neuron of layer r - 1.

Multilayer Perceptrons

$$y_{k}^{o}(i) = x_{k}(i), \ k = 1, ..., k_{o}$$

Notation

Let \mathbf{v}_{j}^{r} be the total input to the jth neuron of layer r: $\mathbf{v}_{j}^{r}(i) = \left(\mathbf{w}_{j}^{r}\right)^{t} \mathbf{y}^{r-1}(i) = \sum_{k=0}^{k} w_{jk}^{r} \mathbf{y}_{k}^{r-1}(i)$

where we define $y_{o}^{r}(i) = +1$ to incorporate the bias term.

CSE 440 $\frac{r}{4/5327}$ Introduction to Machine Learning and Pattern Recognition

J. Elder

Multilayer Perceptrons

□ A common cost function is the squared error:

$$\begin{aligned} \mathcal{J} &= \sum_{i=1}^{N} \varepsilon(i) \\ \text{where } \varepsilon(i) \triangleq \frac{1}{2} \sum_{m=1}^{k_{L}} \left(\boldsymbol{e}_{m}(i) \right)^{2} = \frac{1}{2} \sum_{m=1}^{k_{L}} \left(\boldsymbol{y}_{m}(i) - \hat{\boldsymbol{y}}_{m}(i) \right)^{2} \\ \text{and} \end{aligned}$$

$$\hat{y}_m(i) = y_k^r(i)$$
 is the output of the network.

Cost Function

Multilayer Perceptrons

To summarize, the error for input *i* is given by

$$\varepsilon(i) = \frac{1}{2} \sum_{m=1}^{k_{L}} \left(e_{m}(i) \right)^{2} = \frac{1}{2} \sum_{m=1}^{k_{L}} \left(\hat{y}_{m}(i) - y_{m}(i) \right)^{2}$$

where $\hat{y}_m(i) = y_k^r(i)$ is the output of the output layer and each layer is related to the previous layer through

CSE 4404/5327 Introduction to Machine Le a^1 ning and Pattern Recognition

J. Elder

Gradient Descent

Multilayer Perceptrons

$$\varepsilon(i) = \frac{1}{2} \sum_{m=1}^{k_{L}} (e_{m}(i))^{2} = \frac{1}{2} \sum_{m=1}^{k_{L}} (\hat{y}_{m}(i) - y_{m}(i))^{2}$$

- Gradient descent starts with an initial guess at the weights over all layers of the network.
- □ We then use these weights to compute the network output $\hat{y}(i)$ for each input vector $\mathbf{x}(i)$ in the training data.
- \Box This allows us to calculate the error \mathcal{E} (i) for each of these inputs.
- Then, in order to minimize this error, we incrementally update the weights in the negative gradient direction:

$$\mathbf{w}_{j}^{r}(\mathsf{new}) = w_{j}^{r}(\mathsf{old}) - \mu \frac{\partial \mathcal{J}}{\partial \mathbf{w}_{j}^{r}} = w_{j}^{r}(\mathsf{old}) - \mu \sum_{i=1}^{N} \frac{\partial \varepsilon(i)}{\partial \mathbf{w}_{j}^{r}}$$

36

J. Elder

Gradient Descent

Multilayer Perceptrons

$$\Box \quad \text{Since} \ \mathbf{v}_{j}^{r}(i) = \left(\mathbf{w}_{j}^{r}\right)^{t} \mathbf{y}^{r-1}(i) ,$$

the influence of the *j*th weight of the *r*th layer on the error can be expressed as:

37

Gradient Descent

Multilayer Perceptrons

For an intermediate layer r, we cannot compute $\delta_j^r(i)$ directly. However, $\delta_j^r(i)$ can be computed inductively,

starting from the output layer.

Backpropagation: The Output Layer

Multilayer Perceptrons

$$\frac{\partial \varepsilon(i)}{\partial \mathbf{w}_{j}^{r}} = \delta_{j}^{r}(i)\mathbf{y}^{r-1}(i), \text{ where } \delta_{j}^{r}(i) \triangleq \frac{\partial \varepsilon(i)}{\partial \mathbf{v}_{j}^{r}(i)}$$

and $\varepsilon(i) = \frac{1}{2} \sum_{m=1}^{k_{L}} \left(\mathbf{e}_{m}(i) \right)^{2} = \frac{1}{2} \sum_{m=1}^{k_{L}} \left(\hat{\mathbf{y}}_{m}(i) - \mathbf{y}_{m}(i) \right)^{2}$
Recall that $\hat{\mathbf{y}}_{m}(i) = \mathbf{y}_{j}^{L}(i) = f\left(\mathbf{v}_{j}^{L}(i)\right)$

Thus at the output layer we have

$$\delta_{j}^{L}(i) = \frac{\partial \varepsilon(i)}{\partial v_{j}^{L}(i)} = \frac{\partial \varepsilon(i)}{\partial e_{j}^{L}(i)} \frac{\partial e_{j}^{L}(i)}{\partial v_{j}^{L}(i)} = e_{j}^{L}(i)f'(v_{j}^{L}(i))$$
$$f(a) = \frac{1}{1 + \exp(-a)} \rightarrow f'(a) = f(a)(1 - f(a))$$
$$\delta_{j}^{L}(i) = e_{j}^{L}(i)f(v_{j}^{L}(i))(1 - f(v_{j}^{L}(i)))$$

$$\begin{array}{c} \Sigma & f \\ & &$$

39

CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

Backpropagation: Hidden Layers

40

Multilayer Perceptrons

Observe that the dependence of the error on the total input to a neuron in a previous layer can be expressed in terms of the dependence on the total input of neurons in the following layer:

$$\delta_{j}^{r-1}(i) = \frac{\partial \varepsilon(i)}{\partial v_{j}^{r-1}(i)} = \sum_{k=1}^{k_{r}} \frac{\partial \varepsilon(i)}{\partial v_{k}^{r}(i)} \frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)} = \sum_{k=1}^{k_{r}} \delta_{k}^{r}(i) \frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)}$$
where $v_{k}^{r}(i) = \sum_{m=0}^{k_{r-1}} w_{km}^{r} y_{m}^{r-1}(i) = \sum_{m=0}^{k_{r-1}} w_{km}^{r} f\left(v_{m}^{r-1}(i)\right)$
Thus we have $\frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)} = w_{kj}^{r} f'\left(v_{j}^{r-1}(i)\right)$
and so $\delta_{j}^{r-1}(i) = \frac{\partial \varepsilon(i)}{\partial v_{j}^{r-1}(i)} = f'\left(v_{j}^{r-1}(i)\right) \sum_{k=1}^{k_{r}} \delta_{k}^{r}(i) w_{kj}^{r} = f\left(v_{j}^{L}(i)\right) \left(1 - f\left(v_{j}^{L}(i)\right)\right) \sum_{k=1}^{k_{r}} \delta_{k}^{r}(i) w_{kj}^{r}$

Thus once the $\delta_{k}^{r}(i)$ are determined they can be propagated backward to calculate $\delta_i^{r-1}(i)$ using this inductive formula.

Backpropagation: Summary of Algorithm

Multilayer Perceptrons

- 1. Initialization
 - Initialize all weights with small random values
- 2. Forward Pass
 - For each input vector, run the network in the forward direction, calculating: $v_j^r(i) = (\mathbf{w}_j^r)^t \mathbf{y}^{r-1}(i); \quad \mathbf{y}_j^r(i) = f(\mathbf{v}_j^r(i))$ and finally $\varepsilon(i) = \frac{1}{2} \sum_{m=1}^{k_L} (\mathbf{e}_m(i))^2 = \frac{1}{2} \sum_{m=1}^{k_L} (\hat{\mathbf{y}}_m(i) - \mathbf{y}_m(i))^2$ Reclaward Pass
 - Backward Pass

Starting with the output layer, use our inductive formula to compute the $\delta_i^{r-1}(i)$:

- Output Layer (Base Case): $\delta_j^L(i) = e_j^L(i)f'(v_j^L(i))$
- Hidden Layers (Inductive Case): $\delta_j^{r-1}(i) = f'(\mathbf{v}_j^{r-1}(i)) \sum_{k=1}^{k_r} \delta_k^r(i) \mathbf{w}_{kj}^r$
- Update Weights

1

$$\mathbf{w}_{j}^{r}(\text{new}) = \mathbf{w}_{j}^{r}(\text{old}) - \mu \sum_{i=1}^{N} \frac{\partial \varepsilon(i)}{\partial \mathbf{w}_{j}^{r}} \quad \text{where } \frac{\partial \varepsilon(i)}{\partial \mathbf{w}_{j}^{r}} = \delta_{j}^{r}(i) \mathbf{y}^{r-1}(i)$$

CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

3.

Batch vs Online Learning

 As described, on each iteration backprop updates the weights based upon all of the training data. This is called **batch learning**.

$$\mathbf{w}_{j}^{r}(\text{new}) = \mathbf{w}_{j}^{r}(\text{old}) - \mu \sum_{i=1}^{N} \frac{\partial \varepsilon(i)}{\partial \mathbf{w}_{j}^{r}} \quad \text{where } \frac{\partial \varepsilon(i)}{\partial \mathbf{w}_{j}^{r}} = \delta_{j}^{r}(i) \mathbf{y}^{r-1}(i)$$

An alternative is to update the weights after each training input has been processed by the network, based only upon the error for that input. This is called **online learning**.

$$\mathbf{w}_{j}^{r}(\text{new}) = \mathbf{w}_{j}^{r}(\text{old}) - \mu \frac{\partial \varepsilon(i)}{\partial \mathbf{w}_{j}^{r}} \quad \text{where } \frac{\partial \varepsilon(i)}{\partial \mathbf{w}_{j}^{r}} = \delta_{j}^{r}(i)\mathbf{y}^{r-1}(i)$$

Batch vs Online Learning

- One advantage of batch learning is that averaging over all inputs when updating the weights should lead to smoother convergence.
- On the other hand, the randomness associated with online learning might help to prevent convergence toward a local minimum.
- Changing the order of presentation of the inputs from epoch to epoch may also improve results.

44

🗆 Local Minima

The objective function is in general non-convex, and so the solution may not be globally optimal.

Stopping Criterion

Typically stop when the change in weights or the change in the error function falls below a threshold.

Learning Rate

 \blacksquare The speed and reliability of convergence depends on the learning rate μ .

