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Implementing Logical Relations 

 

¨  AND and OR operations are linearly separable problems 
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The XOR Problem 

¨  XOR is not linearly separable. 

¨  How can we use linear classifiers to solve this 
problem? 

x1 x2 XOR Class 

0 0 0 B 

0 1 1 A 

1 0 1 A 

1 1 0 B 
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Combining two linear classifiers 

¨  Idea:  use a logical combination of two linear 
classifiers. 
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Observe that the classification problem is then solved by
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Combining two linear classifiers 

  

Let f (x) be the unit step activation function:

f (x) = 0,  x < 0

f (x) = 1,  x ≥ 0
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Combining two linear classifiers 

¨  This calculation can be implemented sequentially: 
1.  Compute y1 and y2 from x1 and x2. 

2.  Compute the decision from y1 and y2. 

¨  Each layer in the sequence consists of one or more linear classifications. 

¨  This is therefore a two-layer perceptron. 
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The Two-Layer Perceptron 
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Layer 1 

 
Layer 2 

x1 x2 y1 y2 
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The Two-Layer Perceptron 

¨  The first layer performs a nonlinear mapping that 
makes the data linearly separable. 
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The Two-Layer Perceptron Architecture 
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The Two-Layer Perceptron 

¨  Note that the hidden layer maps the plane onto the 
vertices of a unit square. 
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Higher Dimensions 

¨  Each hidden unit realizes a hyperplane discriminant function. 
¨  The output of each hidden unit is 0 or 1 depending upon the 

location of the input vector relative to the hyperplane.  

lRx∈ { } piyyyyx i
T

p ,...2 ,1  1 ,0 ,],...[ 1 =∈=→
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Higher Dimensions 

¨  Together, the hidden units map the input onto the vertices of a 
p-dimensional unit hypercube. 

lRx∈ { } piyyyyx i
T

p ,...2 ,1  1 ,0 ,],...[ 1 =∈=→
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Two-Layer Perceptron 

¨  These p hyperplanes partition the l-dimensional input space 
into  polyhedral regions 

¨  Each region corresponds to a different vertex of the p-
dimensional hypercube represented by the outputs of the 
hidden layer.  
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Two-Layer Perceptron 

¨  In this example, the vertex (0, 0, 1) corresponds to the region 
of the input space where: 
¤  g1(x) < 0 
¤  g2(x) < 0 
¤  g3(x) > 0 
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Limitations of a Two-Layer Perceptron 

¤  The output neuron realizes a hyperplane in the 
transformed  space that partitions the p 
vertices into two sets.  

¤  Thus, the two layer perceptron has the 
capability to classify vectors into classes that 
consist of unions of polyhedral regions.   

¤  But NOT ANY union.  It depends on the 
relative position of the corresponding vertices. 

¤  How can we solve this problem? 
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The Three-Layer Perceptron 

¨  Suppose that Class A consists of the union of K polyhedra in the input space. 

¨  Use K neurons in the 2nd hidden layer. 

¨  Train each to classify one Class A vertex as positive, the rest negative. 

¨  Now use an output neuron that implements the OR function. 
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The Three-Layer Perceptron 

¨  Thus the three-layer perceptron can separate 
classes resulting from any union of polyhedral 
regions in the input space.  
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The Three-Layer Perceptron 

¨  The first layer of the network forms the hyperplanes in the input space. 

¨  The second layer of the network forms the polyhedral regions of the input 
space 

¨  The third layer forms the appropriate unions of these regions and maps 
each to the appropriate class. 
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Outline 

¨  Combining Linear Classifiers 
¨  Learning Parameters 
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Training Data 

¨  The training data consist of N input-output pairs: 

    

y(i ), x(i )( ) , i ∈ 1,…N

where
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Choosing an Activation Function 

¨  The unit step activation function means that the error 
rate of the network is a discontinuous function of the 
weights. 

¨  This makes it difficult to learn optimal weights by 
minimizing the error. 

¨  To fix this problem, we need to use a smooth 
activation function. 

¨  A popular choice is the sigmoid function we used for 
logistic regression: 
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Smooth Activation Function 

  
f (a) =

1

1+ exp(−a)140 8 Classification models




Figure 8.3 Logistic regression model in 1D and 2D. a) One dimensional fit.
Green points denote set of examples S0 where y = 0. Pink points denote
set of examples S1 where y = 1. Note that in this (and all future figures
in this chapter) we have only plotted the probability Pr(y = 1|x) (compare
to figure 8.2c). The probability Pr(y = 0|x) can be trivially computed as
1 � Pr(y = 1|x). b) Two dimensional fit. Here, the model has a sigmoid
profile in the direction of the gradient � and is constant in the orthogonal
directions. The decision boundary (blue line) is linear.

As usual, however, it is simpler to maximize the logarithm L of this expression.
Since the logarithm is a monotonic transformation, it does not change the position
of the maximum with respect to �. However, applying the logarithm the product
and replaces it with a sum so that

L =
I⌥

i=1

yi log

⇤
1

1 + exp[��Txi]

⌅
+

I⌥

i=1

(1� yi) log

⇧
exp[��Txi]

1 + exp[��Txi]

⌃
. (8.6)

The derivative of the log likelihood L with respect to the parameters � is

⇥L

⇥�
=

I⌥

i=1

�
1

1 + exp[��Txi]
� yi

⇥
xi =

I⌥

i=1

(sig[ai]� yi)xi. (8.7)

Unfortunately, when we equate this expression to zero, there is no way to re-
arrange to get a closed form solution for the parameters �. Instead we must
rely on a non-linear optimization technique to find the maximum of this function.
We’ll now sketch the main ideas behind non-linear optimization. We defer a more
detailed discussion until section 8.10.

In non-linear optimization, we start with an initial estimate of the solution
� and iteratively improve it. The methods we will discuss rely on computing

  w
tφ   x1
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Output:  Two Classes 

¨  For a binary classification problem, there is a single 
output node with activation function given by 

¨  Since the output is constrained to lie between 0 and 
1, it can be interpreted as the probability of the 
input vector belonging to Class 1. 

  
f (a) =

1

1+ exp(−a)
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Output:  K > 2 Classes 

¨  For a K-class problem, we use K outputs, and the 
softmax function given by 

¨  Since the outputs are constrained to lie between 0 
and 1, and sum to 1, yk can be interpreted as the 
probability that the input vector belongs to Class K. 

  

y
k
=

exp a
k( )

exp a
j( )

j

∑
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Non-Convex 

¨  Now each layer of our multi-layer perceptron is a 
logistic regressor. 

¨  Recall that optimizing the weights in logistic regression 
results in a convex optimization problem. 

¨  Unfortunately the cascading of logistic regressors in the 
multi-layer perceptron makes the problem non-convex. 

¨  This makes it difficult to determine an exact solution. 
¨  Instead, we typically use gradient descent to find a 

locally optimal solution to the weights. 
¨  The specific learning algorithm is called the 

backpropagation algorithm. 
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Nonlinear Classification and Regression:  Outline 

¨  Multi-Layer Perceptrons 
¤ The Back-Propagation Learning Algorithm 

¨  Generalized Linear Models 
¤ Radial Basis Function Networks 
¤ Sparse Kernel Machines 

n Nonlinear SVMs and the Kernel Trick 
n Relevance Vector Machines 



Paul J. Werbos. Beyond Regression: New Tools for Prediction and 
Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 
1974  
Rumelhart, David E.; Hinton, Geoffrey E., Williams, Ronald J. (8 
October 1986). "Learning representations by back-propagating 
errors". Nature 323 (6088): 533–536.  

The Backpropagation Algorithm 

Werbos Rumelhart Hinton 
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Notation 

¨  Assume a network with L layers 
¤  k0 nodes in the input layer. 

¤  kr nodes in the r’th layer. 



Multilayer Perceptrons 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

31 

Notation 

  Let yk
r −1  be the output of the kth neuron of layer r − 1.

  

Let w
jk
r  be the weight of the synapse on the jth neuron of layer r  

from the kth neuron of layer r − 1.
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Input 

   
y

k

0(i ) = x
k
(i ), k = 1,… ,k

0
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Notation 

  

Then y
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Let v

j
r  be the total input to the jth neuron of layer r :

   

v
j
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j
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t
yr −1 (i ) = w
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r y
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∑

where we define y
0
r (i ) = +1 to incorporate the bias term.
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Cost Function 

¨  A common cost function is the squared error: 

   

J = ε (i )
i =1

N
∑

where ε (i )  1
2 em(i )( )2

m=1

kL

∑ = 1
2 ym (i ) − ŷm (i )( )2

m=1

kL

∑
and 
ŷm (i ) = yk

r (i ) is the output of the network.
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Cost Function 

¨  To summarize, the error for input i is given by 

where    is the output of the output layer           
and each layer is related to the previous layer through 
 

and 
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Gradient Descent 

¨  Gradient descent starts with an initial guess at the weights over all 
layers of the network. 

¨  We then use these weights to compute the network output      for 
each input vector x(i) in the training data. 

¨  This allows us to calculate the errorε(i) for each of these inputs. 

¨  Then, in order to minimize this error, we incrementally update the 
weights in the negative gradient direction: 

  
ε (i ) = 1

2 em(i )( )2
m=1

kL

∑ = 1
2 ŷm (i ) − ym (i )( )2
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N
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   ̂y(i )
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Gradient Descent 

¨  Since        , 
the influence of the jth weight of the rth layer on the error can 
be expressed as: 
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Gradient Descent 

    

∂ε (i )

∂w
j

r
= δ

j

r (i )yr −1 (i ),

where

δ
j
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∂ε (i )

∂v
j
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For an intermediate layer r, 

we cannot compute δ
j
r (i ) directly.

  

However, δ
j
r (i ) can be computed inductively, 

starting from the output layer.
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Backpropagation:  The Output Layer 

Thus at the output layer we have 

    
∂ε (i )
∂wj

r = δ j
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Backpropagation:  Hidden Layers 

¨  Observe that the dependence of the error on the total input to a neuron in 
a previous layer can be expressed in terms of the dependence on the total 
input of neurons in the following layer: 

  
δ j
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Thus once the δk
r (i ) are determined they can be propagated backward 

to calculate δ j
r −1 (i ) using this inductive formula.
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Backpropagation:  Summary of Algorithm 

1.  Initialization 
¤  Initialize all weights with small random values 

2.  Forward Pass 
¤  For each input vector, run the network in the forward direction, calculating: 

 

3.  Backward Pass 
¤  Starting with the output layer, use our inductive formula to compute the          : 

n  Output Layer (Base Case): 

n  Hidden Layers (Inductive Case): 

4.  Update Weights 
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Batch vs Online Learning 

¨  As described, on each iteration backprop updates 
the weights based upon all of the training data.  
This is called batch learning. 

¨  An alternative is to update the weights after each 
training input has been processed by the network, 
based only upon the error for that input.  This is 
called online learning. 

   
wj
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Batch vs Online Learning 

¨  One advantage of batch learning is that averaging 
over all inputs when updating the weights should 
lead to smoother convergence. 

¨  On the other hand, the randomness associated with 
online learning might help to prevent convergence 
toward a local minimum. 

¨  Changing the order of presentation of the inputs 
from epoch to epoch may also improve results. 
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Remarks 

¨  Local Minima 
¤ The objective function is in general non-convex, and so 

the solution may not be globally optimal. 

¨  Stopping Criterion 
¤ Typically stop when the change in weights or the 

change in the error function falls below a threshold. 

¨  Learning Rate 
¤ The speed and reliability of convergence depends on 

the learning rate μ. 


