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Implementing Logical Relations

1 AND and OR operations are linearly separable problems

2 2}
AND OR
B A A A
*0,1) @, 0,1 CIRY
(0.0) L(LO) . (0,0) @(1,0) .
B B X B A L
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The XOR Problem

XOR is not linearly separable.

X4 X, XOR | Class
0 0 0 B

0 1 1 A

1 0 1 A

1 1 0 B

2,
1 (‘)A ° B
B —~ A
6’ @ 9?1

How can we use linear classifiers to solve this

problem?
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Combining two linear classifiers

1 ldea: use a logical combination of two linear
classifiers.

3
gZ(X)=X1+X2—£ \

A
EERCRN

gl(x):x1+x2—£ +\
B

® -
0,0)T L ~(1,0) & x,

YORK g,(x) £5(r)
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Combining two linear classifiers

Let f(x) be the unit step activation function:
f(x)=0, x<O
f(x)=1 x=0

Observe that the classification problem is then solved by

1
F()’l—)’z—g] gz(x):x1+x2—§ .

where +\

y, =f(g,(x)) and y, = f(g,(x))

9,(x)=x +x,-=

B A

©,0)° ¢ *(1,0)
g,(0)
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Combining two linear classifiers

This calculation can be implemented sequentially:
Compute y,; and y, from x; and x.,.

Compute the decision from y,; and y..
Each layer in the sequence consists of one or more linear classifications.

This is therefore a two-layer perceptron.

3
9,(x)=x +x, -~

f[yl_yz_%] \

where
@A B

Y, = f(gl(x)) and Y, = f(gz(x)) Q ®a1,1
1

9,(x) =x +x, —5

B A

0.0)® + *(1,0) <

YORK e 2a()
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The Two-Layer Perceptron

Layer 1 Layer 2 1
Xy | X3 | Y Y2 - f YTV T E
T T o0 T A where
1] 0o |1+ | o) | aQ Yy = f(gl(x)) and y, = f(gz(x))
1 1 1(+) | 1(+) B(0)

,1]2“
9,00 =X +x,=5 raver Layer 2
-, 1

_©1) ®a.n
(x)=x +x, - !
gl 1 2 B
B A - @ >
0,0y° - *(1.0) F 00" / (1,0) y,
g,(x) £2,(r)
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The Two-Layer Perceptron

The first layer performs a nonlinear mapping that
makes the data linearly separable.

Y, = F(gl(x)) and y, = F(gz(x))

R

(x) = x +x 23 Layer 1 " Layer 2
g2 - 1 2 290 A y
U Y. —y :
\ 1 2 2
B
‘any s+
A B
+(0,1)<‘ ®a.n
(x)=x +x — 1
9, 1 2 B
B A - @ >
0,007 + ®(1.0) & x, (O’W / (1,0) Y
g,(x) £,(a)
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The Two-Layer Perceptron Architecture
T

Input Layer Hidden Layer Output Layer

x1</\

o1
2

N

-1

3
g,(x) = x +x, ~3

|

o3

xz’
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The Two-Layer Perceptron

1 Note that the hidden layer maps the plane onto the
vertices of a unit square.

Y, = F(gl(x)) and y, = F(gz(x))

R

Layer 1

gy () 2, ()

XORK ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder

IVERSITE
UNIVERSITY




Higher Dimensions

-1 Each hidden unit realizes a hyperplane discriminant function.

1 The output of each hidden unit is O or 1 depending upon the
location of the input vector relative to the hyperplane.

Y,

\1)—>

\

x—=>y=[,.y,1". € {01} i=12...p
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Higher Dimensions

11 Together, the hidden units map the input onto the vertices of a
p-dimensional unit hypercube.

xe R x—=>y=[y,.y,1, 0,1} i=12,.p
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Two-Layer Perceptron

These p hyperplanes partition the I-dimensional input space
into polyhedral regions

Each region corresponds to a different vertex of the p-
dimensional hypercube represented by the outputs of the
hidden layer.

9>
B
001 / i N
Iy 9
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Two-Layer Perceptron

7 In this example, the vertex (O, O, 1) corresponds to the region
of the input space where:

91(X) <0
QQ(X) <0
g3(x) >0
011 111
010 110
001 101
Y, Ys
000 100 %yl
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Limitations of a Two-Layer Perceptron

The output neuron realizes a hyperplane in the
transformed space that partitions the p
vertices into two sets.

Thus, the two layer perceptron has the
capability to classify vectors into classes that
consist of unions of polyhedral regions.

But union. |t depends on the
relative position of the corresponding vertices.

How can we solve this problem?

' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder




The Three-Layer Perceptron

1 Suppose that Class A consists of the union of K polyhedra in the input space.

=1 Use K neurons in the 2" hidden layer.

o1 Train each to classify one Class A vertex as positive, the rest negative.

1 Now use an output neuron that implements the OR function.

&L < > —A{ \
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mput 1" hidden 2" hidden
layer layer layer
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The Three-Layer Perceptron

71 Thus the three-layer perceptron can separate
classes resulting from any union of polyhedral

regions in the input space.

X, {
AN ,\ —_—
< _—A
\\ 2\ \ > — N
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The Three-Layer Perceptron

71 The first layer of the network forms the hyperplanes in the input space.

1 The second layer of the network forms the polyhedral regions of the input

space

=1 The third layer forms the appropriate unions of these regions and maps

each to the appropriate class.
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Training Data

The training data consist of N input-output pairs:

(Y. x(D), iel..N

where

y() = [,0.ee0y, )|

and

x(i) = [xl(i),...,xko(i)]f
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Choosing an Activation Function

The unit step activation function means that the error
rate of the network is a discontinuous function of the
weights.

This makes it difficult to learn optimal weights by
minimizing the error.

To fix this problem, we need to use a smooth
activation function.

A popular choice is the sigmoid function we used for
logistic regression:
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Smooth Activation Function
"2 |

f(a)=
1+ exp(—a)
! o
X;,1 € So e
o o % [cbl
P2
T e ®eoo
2 o ®00 %
08 0 °
000/ %o
o °
o Xi77: € S]
, ;1 €S8 °
T, 1 € So ) 000 © 0
0 0o} & o
w'o X
YORKHBI 1
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Output: Two Classes

For a binary classification problem, there is a single
output node with activation function given by

1

(@)= 1+ exp(—a)

Since the output is constrained to lie between O and
1, it can be interpreted as the probability of the
input vector belonging to Class 1.
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Output: K > 2 Classes

For a K-class problem, we use K outputs, and the
softmax function given by

exp(a, )

Y= zj:exp(aj)

Since the outputs are constrained to lie between O
and 1, and sum to 1, y, can be interpreted as the
probability that the input vector belongs to Class K.
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Non-Convex

Now each layer of our multi-layer perceptron is a
logistic regressor.

Recall that optimizing the weights in logistic regression
results in a convex optimization problem.

Unfortunately the cascading of logistic regressors in the
multi-layer perceptron makes the problem non-convex.

This makes it difficult to determine an exact solution.

Instead, we typically use gradient descent to find a
locally optimal solution to the weights.

The specific learning algorithm is called the
backpropagation algorithm.
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Nonlinear Classification and Regression: Outline

Multi-Layer Perceptrons
The Back-Propagation Learning Algorithm

Generalized Linear Models

Radial Basis Function Networks

Sparse Kernel Machines
Nonlinear SVMs and the Kernel Trick

Relevance Vector Machines
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The Backpropagation Algorithm

Paul J. Werbos. Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences. PhD thesis, Harvard University,

1974
Rumelhart, David E.; Hinton, Geoffrey E., Williams, Ronald J. (8

October 1986). "Learning representations by back-propagating
errors". Nature 323 (6088): 533-536.

Rumelhart Hinton



Notation
m Multilayer Perceptrons

1 Assume a network with L layers

o ko nodes in the input layer.

o k_nodes in the r'th layer.

=
P

r-1
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Notation

Let y'™ be the output of the kth neuron of layer r — 1.

Let w’, be the weight of the synapse on the jth neuron of layer r

from the kth neuron of layer r —1.

J. Elder




Input
m Multilayer Perceptrons

yo(i)=x (i), k=1,...,k

r
). .
Il") * y’

t4
/V

o o
%F—J EF—féég
YORKQ) - '”
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Notation

Let v’ be the total input to the jth neuron of layer r:
t Ky
0 =W Y70 = 2wy )

where we define y (i) = +1 to incorporate the bias term.

Then y'(i) = £ (v/(i)) = F(Z w;ky;I(i)]

k=0
v u;
f '
p
._] I
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Cost Function

A common cost function is the squared error:

J = ZNle(i)
where (i) = %i(e (i))2 mi( (i) — )A’m(i))2
and

y (i) = y. (i) is the output of the network.

YO R I<E ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition

IIIIIIIII

J. Elder



Cost Function

To summarize, the error for input i is given by

£(i) = %g(emm)z - %g(mi) ~y, )

where ¢ (i) = y. (i) is the output of the output layer

and each layer is related to the previous layer through

(i) = £ {v;0) <>
and . ,.

v!

vi(i) = (wr) y™0)

9 o
=]

I
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Gradient Descent

S
S

YORK

N
T

£
Y

k, k,

) =5 3 (e, 0 =5 (9,00,

m:]. m:

Gradient descent starts with an initial guess at the weights over all
layers of the network.

We then use these weights to compute the network output y(i) for
each input vector x(i) in the training data.

This allows us to calculate the error € (i) for each of these inputs.

Then, in order to minimize this error, we incrementally update the
weights in the negative gradient direction:

. 0J 88(/)
wj(new) w "(old) - ua— =w "(old) - NZ o >0 o,
> < o<

' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder




Gradient Descent

;
0 Since v;(i) = (w;) yH(i)
the influence of the jth weight of the rth layer on the error can
be expressed as:

0e(i) _ 0e(i) 9v;(i) |

w o) aw T
= 57(1y™(7) |
where ?

55(/.) A o&(i)

oV’ (i) %
o

r-1

=
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Gradient Descent

20 _ sy |
ow’ ! l 7
/ R
where
5r(l) é ag(’) ,
/ av;(i) 5
7

For an intermediate layer r,
we cannot compute 65_(i) directly.

However, 5; (/) can be computed inductively,

starting from the output layer.

YORK

IVERSITE
UNIVERSITY
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Backpropagation: The Output Layer

aE(f) NI TT re:y A ag(i)
8w; = 5J, ()y"(i), where 51(1) = av;(i)
and £(i) = %z(em(i))z _ %Z(?m(i) —y. ()

Recall that §, (1) = y*(i) = £ v(1))

Thus at the output layer we have

L Oe(i)  oe(i) oe,(D) -
20= 50 " sy vy - o)

1 ’ ) ) r-1
(@)= ooca f'(a)=f(a)(1-f(a))

8(1) = e (OF (vi0) (1= F (1))
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Backpropagation: Hidden Layers

Observe that the dependence of the error on the total input to a neuron in
a previous layer can be expressed in terms of the dependence on the total

input of neurons in the following layer:

g 0e(i) <& 0e() ovi(D) & . Ovi(i)
0= 5mn T Eam o 25000

& o

kr—l k"—l
where v (i) = Y wl vy (i)=Y w f (V,rn_l(l'))
m=0 m=0

M) _ wi (Vi)

Vi) ,

and so 87(i) = aif_(li()i = F (v;‘l(i))ic‘i/:(i)w;j = F(v()(1- F(vj(i)))iélf(i)w;j

r -
v! 7] é_,/f‘
by / f /
:
-

Thus we have

Thus once the o, (i) are determined they can be propagated backward

to calculate 6;‘1(i) using this inductive formula.
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Backpropagation: Summary of Algorithm

Initialization

Initialize all weights with small random values

Forward Pass

For each input vector, run the network in the forward direction, calculating:
f . r .
i =(w) y iy =F(v()
K

and finally £(i) = %i(em(i))2 - 2()7,”(1') - )’m(i))2

m=1 2 m=1

Backward Pass

Starting with the output layer, use our inductive formula to compute the 5;_1(i) :

Output Layer (Base Case): 55([) = ej(i)f’(vj.(l'))

k
H H . r=1¢:\ _ 7 r=1¢. r{;: r
Hidden Layers (Inductive Case): 6j (i)=F (vj (/))%5/( (I)ij

Repeat until convergence
A

Update Weights

w’(new) = w’(old) - uzN:a;—(lr) where Bae_(/r) =67 (i)y" (i)
w’

I:l j
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Batch vs Online Learning

As described, on each iteration backprop updates
the weights based upon all of the training data.
This is called batch learning.

0&(i)

-
J

wr(n _ r < ag(l) _ 6r : r-1¢:
"(new) = w’(old) - MZW where = 87(i)y™(i)
i=1 J

An alternative is to update the weights after each
training input has been processed by the network,

based only upon the error for that input. This is

called online learning.

w’Jf(new) = w;(old) - ,ua;—(l) where oe(i)
w

r ow’,

= 57 ()™ ()
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Batch vs Online Learning

One advantage of batch learning is that averaging
over all inputs when updating the weights should
lead to smoother convergence.

On the other hand, the randomness associated with
online learning might help to prevent convergence
toward a local minimum.

Changing the order of presentation of the inputs
from epoch to epoch may also improve results.
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Remarks

Local Minima

The objective function is in general non-convex, and so
the solution may not be globally optimal.

Stopping Criterion

Typically stop when the change in weights or the
change in the error function falls below a threshold.

Learning Rate

The speed and reliability of convergence depends on
the learning rate U.
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